
Feature: Embedded

20 April 2021 www.electronicsworld.co.uk

T he effective testing of an
IC during the verification
process prior to fabrication
remains a perennial issue
for design engineers,
made worse by the

inability to accurately measure the
progress of verification.

There are various verification coverage
techniques, all with disadvantages, leading
to incomplete verification, poor test quality
and duplicated verification effort on well-
tested parts of the design. Many reasons lie
behind these drawbacks, including poorly-
defined metrics, incompatible tools and
unclear methodologies.

A good verification environment should
include all the important functions of
a Design Under Verification (DUV)
through coverage metrics, to provide
a multi-dimensional measurement of
the verification progress. For example,
the quality of the input stimuli created
during verification will determine if
certain operational scenarios are triggered
(functional coverage), or that certain
parts of the DUV code are activated
(structural coverage). These are valuable
measurements when assessing the quality
of the verification process as a whole.

Formal-based processes
Before silicon tape-out, companies usually
insist on specified coverage goals being
reached in order to qualify the design.
There are two potential reasons why a
certain operational scenario is not covered:
The first is that the verification process
doesn’t produce the right test patterns,
requiring further effort; and the second is
that the scenarios remaining uncovered

Mitigating verification
risk by understanding
the coverage

cannot be activated at all, because they
are simply unreachable – i.e., can’t
be stimulated due to the design code
structure. Overall, it can be difficult
to ascertain which of these situations
is occurring.

Formal-based technologies can help
resolve these issues, by applying them
in a simulation-based flow, generating
scenarios due to the exhaustive nature of
their operation.

If coverage data is available from other
sources, such as simulation output or a
coverage database, this automatic test
generation process may be guided toward
previously-untested scenarios or coverage
“holes”. At this point, a formal engine can
either automatically generate test stimulus
for the DUV to cover the hole, or prove
that no such stimulus exists, and it is
therefore pointless to look for coverage
where it is unachievable.

This formal-based process is fully
automatic, and in both cases provides
valuable information. Ideally, this process
would be repeated for each iteration
of the design. In this application, the
formal technology is being leveraged
to assist simulation-based verification.
Engineering effort may be reduced
significantly without requiring the
engineers to acquire formal analysis
expertise.

Formal tools are exhaustive by design
and consider every potential input
scenario. However, often some of these
scenarios represent illegal inputs and
would generate scenarios that can’t
happen during device operation, hence
should be excluded from the analysis.
Formal constraints would then be

added to exclude illegal input scenarios.
However, if these constraints are too tight
and exclude legal input sequences, the tool
might not evaluate vital behaviour. The
formal constraints must themselves be
verified, to ensure the design verification
process is not over-constrained.

Running formal coverage reachability
analysis in the presence of constraints
will provide an indication of code that
may not be activated. If the constraints
are too tight, some cover goals will
become unreachable, highlighting
which functionality has accidently been
excluded. In this case we call the coverage
goal “constrained”.

Using formal technologies, we can
decide if a scenario is reachable or
unreachable. If reachable, the formal tool
will provide an indication of how it may
be reached, allowing a test to be added to
the verification environment. Constrained
scenarios need further analysis to avoid
accidental over-constraining. In the
context of structural source code based
metrics, we call this system a “simulation
coverage metric”, since it relates to the
notion of activation in a design common
across simulation and formal verification.

Even when a simulation coverage is
considered sufficient, there is still a key
aspect that must be accounted for, yet is
often overlooked.

Simulation-based coverage
In a simulation-based verification
environment, checks sometimes
implemented as assertions are included
to ensure that design behaviour
is as expected. In a formal-based
environment, all the tests are coded as
assertions, which are evaluated against
the design code. However, how do
we know if we have written enough
assertions?

One basic option would be to measure
assertion coverage, which is the status
of each assertion according to the depth
in the design state space it has been
proven (proof radius) and whether it
was triggered (cover radius); see Figure
1. This way we know that assertions
have been written and if they have been

By Nicolae Tusinschi, Product Manager, OneSpin Solutions

Feature: Embedded

 www.electronicsworld.co.uk April 2021 21

run successfully – a useful start. But,
there is no relation to the design code
behaviour, nor do we know if the
assertions are meaningful. It would
be more useful to have some kind
of metric based on the code itself.
Simulation coverage is important, but
it is not comprehensive enough to
answer these questions, as it is only
concerned with the quality of stimuli.

If regions of the DUV are not
necessary and can, for example,
be modified without affecting the
verification, they are either not
required or not verified. We need
to ask what is necessary to make all
the tests and assertions pass. If we
measure the amount of observation
done with checks and assertions, we
can derive a different kind of coverage
that is based on observability.

There are several metrics based on
the observability principle, such as
Cone of Influence (COI) analysis and
mutation analysis.

The transitive logic COI is the
collection of all signals and expressions
potentially having an effect on the
value of a signal of interest, subject
to a check or assertion. COI analysis
finds code locations that are trivially
not observed by an assertion because
they are not in its COI. However, the
COI for some assertions can become
very large without providing a good
indication of what design sections are
actually observed by the assertion.
Hence, it is not clear whether any of
the code locations in the COI of the
assertion are actually observed or not.

Observation coverage
A classic notion of observation
coverage is that of mutation analysis.
Th e idea is to defi ne a set of potential
modifi cations to the source code of
the DUV that correspond to certain
types of errors, a collection of which
is called a “fault model”. A mutation
coverage tool would then apply various
mutations defi ned by the fault model to
each potential fault location of the DUV,
re-run the verifi cation for each location
and each fault, and then test to see if
the modifi cation causes a check fail.
Obviously, the diff erent fault models lead
to diff erent coverage results, rendering
a comparison diffi cult. Various other
shortcomings have also been identifi ed:
• Mutations have to correspond to

syntactically correct code modifi cations
in order to be applied on the source
code. Th is limits the type of errors that
can be modelled.

• Certain mutations at certain
locations can render parts of the code
unreachable, make assertions vacuous,
or both. Th is is hard to predict and
the results become more diffi cult to
understand.

• Th e number of checks to be run is
proportional to the number of checks,
multiplied by the number of fault
locations, multiplied by the number
of error types. Although some process
shortcuts are possible, for example
restricting the analysis to the COI, they
will make the process very expensive in
run-time tool requirements.
A good observation coverage metric

should have the following attributes:

1. Poorly-written assertions that don’t
verify anything should not skew coverage
results, while additional verifi cation
should lead to increased coverage.

2. Th e measurement method should be
independent of syntactic restrictions.

3. Th e metric should relate back to the
source code, so it is easily understood.

4. Th e measurement method should not
lead to unreachable scenarios.

5. Th e metric computation should be
accomplished with a reasonable level of
compute resources and run time.
Quantify is a technology available

from OneSpin Solutions that makes use
of observation coverage to provide an
exceptional measurement of code coverage
achieved by proven assertions. Th e solution
analyses code statements and branches
to provide a concise metric as to whether
these statements are observed by a given
set of assertions operating under a set of
constraints.

Quantify has been proven in real design
fl ows to exhibit a number of advantages
over other coverage methodologies as well
as other forms of observation coverage.

The problem of accurate verification
coverage and its impact on the risk
of product failure and schedule
overrun is well documented. Coverage
solutions to date have proven helpful
but inadequate, although some may be
improved through formal technologies.
Observation coverage takes a different
approach, and with the use of advanced
formal-based technology, rigorous
metrics may be produced that can
significantly increase the confidence of
effective design verification.

Figure 1: OneSpin assertion coverage display

	EW-APR21-PG01
	EW-APR21-PG02
	EW-APR21-PG03
	EW-APR21-PG04
	EW-APR21-PG05
	EW-APR21-PG06
	EW-APR21-PG07
	EW-APR21-PG08
	EW-APR21-PG09
	EW-APR21-PG10
	EW-APR21-PG11
	EW-APR21-PG12
	EW-APR21-PG13
	EW-APR21-PG14
	EW-APR21-PG15
	EW-APR21-PG16
	EW-APR21-PG17
	EW-APR21-PG18
	EW-APR21-PG19
	EW-APR21-PG20
	EW-APR21-PG21
	EW-APR21-PG22
	EW-APR21-PG23
	EW-APR21-PG24
	EW-APR21-PG25
	EW-APR21-PG26
	EW-APR21-PG27
	EW-APR21-PG28
	EW-APR21-PG29
	EW-APR21-PG30
	EW-APR21-PG31
	EW-APR21-PG32
	EW-APR21-PG33
	EW-APR21-PG34
	EW-APR21-PG35
	EW-APR21-PG36
	EW-APR21-PG37
	EW-APR21-PG38
	EW-APR21-PG39
	EW-APR21-PG40
	EW-APR21-PG41
	EW-APR21-PG42
	EW-APR21-PG43
	EW-APR21-PG44

