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T he effective testing of an 
IC during the verification 
process prior to fabrication 
remains a perennial issue 
for design engineers,  
made worse by the 

inability to accurately measure the  
progress of verification. 

There are various verification coverage 
techniques, all with disadvantages, leading 
to incomplete verification, poor test quality 
and duplicated verification effort on well-
tested parts of the design. Many reasons lie 
behind these drawbacks, including poorly-
defined metrics, incompatible tools and 
unclear methodologies.

A good verification environment should 
include all the important functions of 
a Design Under Verification (DUV) 
through coverage metrics, to provide 
a multi-dimensional measurement of 
the verification progress. For example, 
the quality of the input stimuli created 
during verification will determine if 
certain operational scenarios are triggered 
(functional coverage), or that certain 
parts of the DUV code are activated 
(structural coverage). These are valuable 
measurements when assessing the quality 
of the verification process as a whole.

Formal-based processes
Before silicon tape-out, companies usually 
insist on specified coverage goals being 
reached in order to qualify the design. 
There are two potential reasons why a 
certain operational scenario is not covered: 
The first is that the verification process 
doesn’t produce the right test patterns, 
requiring further effort; and the second is 
that the scenarios remaining uncovered 

Mitigating verification 
risk by understanding 
the coverage

cannot be activated at all, because they 
are simply unreachable – i.e., can’t 
be stimulated due to the design code 
structure. Overall, it can be difficult  
to ascertain which of these situations  
is occurring.

Formal-based technologies can help 
resolve these issues, by applying them 
in a simulation-based flow, generating 
scenarios due to the exhaustive nature of 
their operation. 

If coverage data is available from other 
sources, such as simulation output or a 
coverage database, this automatic test 
generation process may be guided toward 
previously-untested scenarios or coverage 
“holes”. At this point, a formal engine can 
either automatically generate test stimulus 
for the DUV to cover the hole, or prove 
that no such stimulus exists, and it is 
therefore pointless to look for coverage 
where it is unachievable. 

This formal-based process is fully 
automatic, and in both cases provides 
valuable information. Ideally, this process 
would be repeated for each iteration 
of the design. In this application, the 
formal technology is being leveraged 
to assist simulation-based verification. 
Engineering effort may be reduced 
significantly without requiring the 
engineers to acquire formal analysis 
expertise.

Formal tools are exhaustive by design 
and consider every potential input 
scenario. However, often some of these 
scenarios represent illegal inputs and 
would generate scenarios that can’t 
happen during device operation, hence 
should be excluded from the analysis. 
Formal constraints would then be 

added to exclude illegal input scenarios. 
However, if these constraints are too tight 
and exclude legal input sequences, the tool 
might not evaluate vital behaviour. The 
formal constraints must themselves be 
verified, to ensure the design verification 
process is not over-constrained.

Running formal coverage reachability 
analysis in the presence of constraints 
will provide an indication of code that 
may not be activated. If the constraints 
are too tight, some cover goals will 
become unreachable, highlighting 
which functionality has accidently been 
excluded. In this case we call the coverage 
goal “constrained”. 

Using formal technologies, we can 
decide if a scenario is reachable or 
unreachable. If reachable, the formal tool 
will provide an indication of how it may 
be reached, allowing a test to be added to 
the verification environment. Constrained 
scenarios need further analysis to avoid 
accidental over-constraining. In the 
context of structural source code based 
metrics, we call this system a “simulation 
coverage metric”, since it relates to the 
notion of activation in a design common 
across simulation and formal verification.

Even when a simulation coverage is 
considered sufficient, there is still a key 
aspect that must be accounted for, yet is 
often overlooked.

Simulation-based coverage 
In a simulation-based verification 
environment, checks sometimes 
implemented as assertions are included 
to ensure that design behaviour 
is as expected. In a formal-based 
environment, all the tests are coded as 
assertions, which are evaluated against 
the design code. However, how do 
we know if we have written enough 
assertions?

One basic option would be to measure 
assertion coverage, which is the status 
of each assertion according to the depth 
in the design state space it has been 
proven (proof radius) and whether it 
was triggered (cover radius); see Figure 
1. This way we know that assertions 
have been written and if they have been 
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run successfully – a useful start. But, 
there is no relation to the design code 
behaviour, nor do we know if the 
assertions are meaningful. It would 
be more useful to have some kind 
of metric based on the code itself. 
Simulation coverage is important, but 
it is not comprehensive enough to 
answer these questions, as it is only 
concerned with the quality of stimuli.

If regions of the DUV are not 
necessary and can, for example, 
be modified without affecting the 
verification, they are either not 
required or not verified. We need 
to ask what is necessary to make all 
the tests and assertions pass. If we 
measure the amount of observation 
done with checks and assertions, we 
can derive a different kind of coverage 
that is based on observability. 

There are several metrics based on 
the observability principle, such as 
Cone of Influence (COI) analysis and 
mutation analysis. 

The transitive logic COI is the 
collection of all signals and expressions 
potentially having an effect on the 
value of a signal of interest, subject 
to a check or assertion. COI analysis 
finds code locations that are trivially 
not observed by an assertion because 
they are not in its COI. However, the 
COI for some assertions can become 
very large without providing a good 
indication of what design sections are 
actually observed by the assertion. 
Hence, it is not clear whether any of 
the code locations in the COI of the 
assertion are actually observed or not.

Observation coverage
A classic notion of observation 
coverage is that of mutation analysis. 
Th e idea is to defi ne a set of potential 
modifi cations to the source code of 
the DUV that correspond to certain 
types of errors, a collection of which 
is called a “fault model”. A mutation 
coverage tool would then apply various 
mutations defi ned by the fault model to 
each potential fault location of the DUV, 
re-run the verifi cation for each location 
and each fault, and then test to see if 
the modifi cation causes a check fail. 
Obviously, the diff erent fault models lead 
to diff erent coverage results, rendering 
a comparison diffi  cult. Various other 
shortcomings have also been identifi ed:
•  Mutations have to correspond to 

syntactically correct code modifi cations 
in order to be applied on the source 
code. Th is limits the type of errors that 
can be modelled.

•  Certain mutations at certain 
locations can render parts of the code 
unreachable, make assertions vacuous, 
or both. Th is is hard to predict and 
the results become more diffi  cult to 
understand.

•  Th e number of checks to be run is 
proportional to the number of checks, 
multiplied by the number of fault 
locations, multiplied by the number 
of error types. Although some process 
shortcuts are possible, for example 
restricting the analysis to the COI, they 
will make the process very expensive in 
run-time tool requirements.
A good observation coverage metric 

should have the following attributes:

1.  Poorly-written assertions that don’t 
verify anything should not skew coverage 
results, while additional verifi cation 
should lead to increased coverage.

2.  Th e measurement method should be 
independent of syntactic restrictions.

3.  Th e metric should relate back to the 
source code, so it is easily understood.

4.  Th e measurement method should not 
lead to unreachable scenarios.

5.  Th e metric computation should be 
accomplished with a reasonable level of 
compute resources and run time.
Quantify is a technology available 

from OneSpin Solutions that makes use 
of observation coverage to provide an 
exceptional measurement of code coverage 
achieved by proven assertions. Th e solution 
analyses code statements and branches 
to provide a concise metric as to whether 
these statements are observed by a given 
set of assertions operating under a set of 
constraints. 

Quantify has been proven in real design 
fl ows to exhibit a number of advantages 
over other coverage methodologies as well 
as other forms of observation coverage.

The problem of accurate verification 
coverage and its impact on the risk 
of product failure and schedule 
overrun is well documented. Coverage 
solutions to date have proven helpful 
but inadequate, although some may be 
improved through formal technologies. 
Observation coverage takes a different 
approach, and with the use of advanced 
formal-based technology, rigorous 
metrics may be produced that can 
significantly increase the confidence of 
effective design verification. 

Figure 1: OneSpin assertion coverage display
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